u
BBBBB

Embedding
Cloud-Centric-Networking
in CCN

M. Sifalakis, M. Monti, C. Tschudin
Dept of Mathematics and Computer Science
University of Basel

CCNxCon, Sep 12, 2012

uni
uuuuu

The Cloud, the Content.. and the User

* The Cloud promises ubiquitous

resources
— Storage and Computation * CCN provides access to content
— On-demand allocation — Location transparency (name based)
— Location transparency — Efficient/Dynamic distribution

(all at the edge of the network) — ... useful for passive content in

pre-defined formats (“cooked”)

(in the core of the network)
* As Users we wish

— customized access to content:
from raw/prime forms to
excerpts and digests

— customized presentation:
Resources+capability to create
new content (dynamically)

CCNxCon2012 2

»e

Cloud Centric Networking in CCN

* Naming content and functions

By “overloading” the existing API
Interest (/bring/me (/my/content));
.. also pipeline the output of one function to the input of another
Interest (/bring/me (/the/digest (/my/content)));

.. and using parameters
Interest (/bring/me (/the/digest (/my/content, “Jan to Sep 2012")));

* CCN as a ubiquitous, native, universal cloud technology
— Extensible set of functions, automatic deployment
— Custom on-demand content manipulation

— Caching of results, load-balancing of new computations, in the net

(Example 1)
Starting simple: Revisiting VoCCN

* VoCCN paper: Content source bound/coupled to service protocol

‘ Interest(/domain/bob/call-id/rtp/seq-no); ‘

* Decoupling service function (provider) from content source provider

— Receiver chooses flavour of transport service

‘ Interest(/ietf/rtp (/domain/bob/call-id/seg-no); ‘

e Variables (validating thunks) for decoupling service look-up from future
activation of service (handle or generate content).

1. Create thunk now (and perform lookup)

‘ Name Transport = Interest(/ietf/rtp); ‘

2. Activate service later

‘ Interest($Transport (/domain/bob/call-id/seg-no);

(Example 2)
Customise on access, content xcoding

Conditionals —
If ($connection in DSL) then
NamedFunc Xcoder = Interest(/online/codec/highdef);
° ; else
TeStlng network NamedFunc Xcoder = Interest(/online/codec/default);
conditions

Interest(/bring/me ($Xcoder (/wished/video)));

NamedFunc Xcoder = Interest(/online/codec/highdef);

° i i If (! $Xcoder) then
Che.Cklr.lg the service Xcoder = Interest(/online/codec/default);
availability

Interest(/bring/me ($Xcoder (/wished/video)));

) If (strstr($Content_name, “mpeg”)) then
b Automat|cally NamedFunc Xcoder = Interest(/online/codec/highdef);

looking for the best e'se dFune Xcoder = Interest(lonline/coded/defadty:
pOSSIble quallty ame unc Xcoder = Interes (onlne coaec/dertau),

Interest(/bring/me ($Xcoder ($Content_name)));

(Example 3)
Handling content as time-series

* In accessing dynamic content, often need to identify
— parts of the corpus (time frames), since it may be infinite
— branches of the corpus (different subsets/evolution paths)
— versions of content (snapshots = static content)

— ... and wish-list content (future produced...or derived) !!

¢ |oops and filter conditions

for (Year in range[2001 .. now])
/my/cloud/live_albums = Interest(/my/cloud/make/slideshow (/bob’s/photos/$Year));

Interest(/google/picasa/playback (/my/cloud/live_albums));

* Raison d'étre for time-stamping content rather than just
sequencing

(Example 4)
Sharing my data

(...while respecting protected IPRs and licensing)

e Publishing virtual (on-the-fly) content: scripting functions

let analysis_results (Condition...) :==
Analysis = /my/cloud/famous/analysis/method; // Public licence
Content = /ipr/protected/dynamic_content; // Private IPR

Create live content
on demand through

(partially evaluated) | for (Filtin list [$Condition])
. /my/or/your/space/$Filt = Interest($Analysis ($Content, $Filt));
named functions Interest(/inkscape/makesvg (/my/or/your/space/$Filt));

Register(analysis_results, /my/cloud/analysis_results);

When content not available or if condition not valid yet, the service “pipe” is still
established. If Interest not expired, content delivered as soon as it is available

Static conditions
| Interest(/my/cloud/analysis_results, cond4fcond2); y

Dynamic conditions

‘Interest(/my/cloud/analysis_results, /funcfgentist/last10yrs); y(content) orovided

CCNXCon2012 7 by named function

>

~ Sounds familiar so far? It starts with
ll}\”

=
»e
nz

What we need is

* Names for abbreviating and publishing (content as well as functions on content)

* Constants
— True/False on name presence
— Conditional test: if-then-else
— Fix point combinator: loops
— Iterators on content (timestamps more powerful than seq numbers)
— Operators: Interest(.), Register(.)
* Minimal type-system
— 1 basic type: content
— Function types stem their definitions on A-terms
— If well-typed we can set rules for distinguishing ops on types of content
— NOTE: Any function with >1 typed arguments can be expressed as a sequence of 1-argument
functions can maps directly to the Interest(.), Register(.) API
* A function formation and function application (reduce) capability:
— Aninterpreter in The Cloud

... And we have a typed A-calculus for content centric networking

CCNxCon2012 8

u
BBBBB

From single source with
multiple users ...

... to multiple sources
(content and functions)
and multiple users
(choosing any combination)

http://named-function.net/

CCNxCon2012 9

% (Additional discussion points #1)
Naming functions/code

* Content manipluation so far only through application level facilities,
executed at the edge = in-network proxies

— For the user (e.g. Mobility)
— For the service (e.g. Event exchange, indirection)

— For the content (E.g. “Late binding” for dynamic content)

e Caching functions/code: Moving code around
— increase service availability and re-use
— reduce latency, distribute processing load
— routing: redirectors

— effective introspection of network state (since it will be cached along
the path between the user and the content source)

— Controlled case: Can be used to update the network fabric
cencomopportunistically (e.g. deploy new protocols, software updates, SDNs)

= (Additional discussion points #2)
Named functions & multiple transports

* On-demand deployment of different transport strategies for
different types of content

— Transport layer closer to the application
— User selects from a number of options

— Content provider can offer the options

* Decouple congestion avoidance/remediation logic (in-net) from
flow/rate control actions (receiver/client end)

e Small extension, consistent with the specification/conventions
— Enabler for the strategy layer

— CCN thin layer remains simple and elegant

