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The Cloud, the Content.. and the User

* The Cloud promises ubiquitous

resources
— Storage and Computation * CCN provides access to content
— On-demand allocation — Location transparency (name based)
— Location transparency — Efficient/Dynamic distribution

(all at the edge of the network) — ... useful for passive content in

pre-defined formats (“cooked”)

(in the core of the network)
* As Users we wish

— customized access to content:
from raw/prime forms to
excerpts and digests

— customized presentation:
Resources+capability to create
new content (dynamically)
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Cloud Centric Networking in CCN

* Naming content and functions

By “overloading” the existing API
Interest (/bring/me (/my/content));
.. also pipeline the output of one function to the input of another
Interest (/bring/me (/the/digest (/my/content)));

.. and using parameters
Interest (/bring/me (/the/digest (/my/content, “Jan to Sep 2012")));

* CCN as a ubiquitous, native, universal cloud technology
— Extensible set of functions, automatic deployment
— Custom on-demand content manipulation

— Caching of results, load-balancing of new computations, in the net

(Example 1)
Starting simple: Revisiting VoCCN

* VoCCN paper: Content source bound/coupled to service protocol

‘ Interest(/domain/bob/call-id/rtp/seq-no); ‘

* Decoupling service function (provider) from content source provider

— Receiver chooses flavour of transport service

‘ Interest(/ietf/rtp (/domain/bob/call-id/seg-no); ‘

e Variables (validating thunks) for decoupling service look-up from future
activation of service (handle or generate content).

1. Create thunk now (and perform lookup)

‘ Name Transport = Interest(/ietf/rtp); ‘

2. Activate service later

‘ Interest($Transport (/domain/bob/call-id/seg-no);




(Example 2)
Customise on access, content xcoding

Conditionals —
If ( $connection in DSL ) then
NamedFunc Xcoder = Interest(/online/codec/highdef);
° ; else
TeStlng network NamedFunc Xcoder = Interest(/online/codec/default);
conditions

Interest( /bring/me ($Xcoder (/wished/video)));

NamedFunc Xcoder = Interest(/online/codec/highdef);

° i i If (! $Xcoder ) then
Che.Cklr.lg the service Xcoder = Interest(/online/codec/default);
availability

Interest(/bring/me ($Xcoder (/wished/video)));

) If ( strstr($Content_name, “mpeg”) ) then
b Automat|cally NamedFunc Xcoder = Interest(/online/codec/highdef);

looking for the best e'se dFune Xcoder = Interest(lonline/coded/defadty:
pOSSIble quallty ame unc Xcoder = Interes (onlne coaec/dertau ),

Interest( /bring/me ($Xcoder ($Content_name)));

(Example 3)
Handling content as time-series

* In accessing dynamic content, often need to identify
— parts of the corpus (time frames), since it may be infinite
— branches of the corpus (different subsets/evolution paths)
— versions of content (snapshots = static content)

— ... and wish-list content (future produced...or derived) !!

¢ |oops and filter conditions

for ( Year in range[2001 .. now] )
/my/cloud/live_albums = Interest(/my/cloud/make/slideshow (/bob’s/photos/$Year));

Interest(/google/picasa/playback (/my/cloud/live_albums));

* Raison d'étre for time-stamping content rather than just
sequencing




(Example 4)
Sharing my data

(...while respecting protected IPRs and licensing)

e Publishing virtual (on-the-fly) content: scripting functions

let analysis_results (Condition...) :==
Analysis = /my/cloud/famous/analysis/method; // Public licence
Content = /ipr/protected/dynamic_content; // Private IPR

Create live content
on demand through

(partially evaluated) | for (Filtin list [$Condition] )
. /my/or/your/space/$Filt = Interest($Analysis ($Content, $Filt));
named functions Interest(/inkscape/makesvg (/my/or/your/space/$Filt));

Register(analysis_results, /my/cloud/analysis_results);

When content not available or if condition not valid yet, the service “pipe” is still
established. If Interest not expired, content delivered as soon as it is available

Static conditions
| Interest(/my/cloud/analysis_results, cond4fcond2); y

Dynamic conditions

‘Interest(/my/cloud/analysis_results, /funcfgentist/last10yrs); y(content) orovided
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~ Sounds familiar so far? It starts with
ll}\”
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What we need is

* Names for abbreviating and publishing (content as well as functions on content)

* Constants
— True/False on name presence
— Conditional test: if-then-else
— Fix point combinator: loops
— Iterators on content (timestamps more powerful than seq numbers)
— Operators: Interest(.), Register(.)
*  Minimal type-system
— 1 basic type: content
— Function types stem their definitions on A-terms
— If well-typed we can set rules for distinguishing ops on types of content
— NOTE: Any function with >1 typed arguments can be expressed as a sequence of 1-argument
functions can maps directly to the Interest(.), Register(.) API
* A function formation and function application (reduce) capability:
— Aninterpreter in The Cloud

... And we have a typed A-calculus for content centric networking
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From single source with
multiple users ...

... to multiple sources
(content and functions)
and multiple users
(choosing any combination)

http://named-function.net/
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%  (Additional discussion points #1)
Naming functions/code

* Content manipluation so far only through application level facilities,
executed at the edge = in-network proxies

— For the user (e.g. Mobility)
— For the service (e.g. Event exchange, indirection)

— For the content (E.g. “Late binding” for dynamic content)

e Caching functions/code: Moving code around
— increase service availability and re-use
— reduce latency, distribute processing load
— routing: redirectors

— effective introspection of network state (since it will be cached along
the path between the user and the content source)

— Controlled case: Can be used to update the network fabric
cencomopportunistically (e.g. deploy new protocols, software updates, SDNs)




= (Additional discussion points #2)
Named functions & multiple transports

* On-demand deployment of different transport strategies for
different types of content

— Transport layer closer to the application
— User selects from a number of options

— Content provider can offer the options

* Decouple congestion avoidance/remediation logic (in-net) from
flow/rate control actions (receiver/client end)

e Small extension, consistent with the specification/conventions
— Enabler for the strategy layer

— CCN thin layer remains simple and elegant




